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Abstract. In order to establish the correct protocol for COVID-19 treat-
ment, estimating the percentage of COVID-19 specific infection within
the lung tissue can be an important tool. This article describes the ap-
proach we used in order to estimate the COVID-19 infection percent-
age on lung CT scan slices within the Covid-19-Infection-Percentage-
Estimation-Challenge. Our method frames the regression problem as a
multi-tasking process and is based on modern training pipelines and
architectures that correspond to state of the art models on image clas-
sification tasks. It obtained the best score on the validation dataset and
ranked third in the testing phase within the competition.
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1 Introduction

The COVID-19 pandemic has become a healthcare crisis around the world since
its start in 2019. Quick discovery of the infected patients is key to positive
outcome. Methods like RT-PCR, X-Ray or CT-scans are the to go choice for
diagnosis of COVID-19 infection. The last two methods mentioned not only can
correctly diagnose a patient with the infection, but they can also give insights into
the stage the disease is progressing. The downside of these two methods is the
burden an expert radiologist might be put through in order to evaluate a great
amount of X-rays or CTs. CT scans have a clear advantage in comparison with X-
rays due to their more detailed structure. Signs of early or late stage of infection
can be easily detected in CT scans, thus making the decision to follow a certain
protocol an easier task for the doctors. Having this into consideration, several
AT solutions have been proposed in order to come to the aid of radiologists.
The Covid-19 Infection Percentage Estimation competition [1], [2] establishes
a new benchmark that may offer real help into depicting the evolution stage
of COVID-19 infection. The organizers have publicly released a dataset which
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consists of several CT scan slices and their corresponding Covid-19 infection
percentage. In the following, we present our solution to the challenge which, on
the validation set beats the second place by a large margin and improves with
more than 1 the MAE score of the baseline solution provided by the organizers
of the competition.

2 Related work

Regression analysis taking as input image data is much less reported in the
literature compared to classification, object detection or segmentation tasks,
especially when it comes to the medical domain; nevertheless, it can greatly
benefit from pre-trained deep models developed to solve the most popular tasks
in computer vision. Such methods, that use deep learning (mostly convolutional
networks) to build a model able to estimate a numerical response variable given
an input image, are generally called deep regression methods.

The latest advancements recorded in deep regression seem to be mostly re-
lated to a few datasets that were published as part of some challenges or for
benchmarking purposes.

In this regard, Age Estimation or Attractiveness Estimation given as input
facial images, attracted a great deal of interest. The authors of [3] improve sev-
eral results on datasets like ChaLearn(2015/ 2016) [10], MORPH [11], FGNET
[15] or UTKFace [12] for age estimation and SCUT-FBP [13] or CFD [14] for face
attractiveness. They jointly learn to maximize the similarity between the target
distribution and the generated distribution at training stage and to regress a
real number in an end-to-end fashion. The output value for an input x is quan-
tized into a range of possible values instead of just one label. The authors also
mention that they pretrain their model on a large corpus of facial images before
training on the downstream tasks. The method proposed by these authors is
an extension of [4]. For attractiveness estimation no other model was found to
report performances on benchmarks. In [5], the authors propose again a multi-
tasking approach, but this time they use extra-training data and infer a posterior
distribution for the ages of images given the results of multiple observed events
of an annotation process. They use ordinal hyperplane [16] methods which are
furthered mapped into posterior distribution using a linear layer with softmax
activation. In [6], the authors extend the regression task into binary tasks used
for rank prediction, where each task indicates whether the predicted output lies
in a certain range or not. For robust results, the authors use for the binary
tasks the same weight parameters, but different bias ones. They use weighted
cross-entropy to optimize the learning process. In [7] the authors give a two
point representation to the age, and consider it as an approximation of adjacent
ends of certain bins which split equally the entire domain of ages. Instead of
learning directly the age, the model learns the distribution of probability of the
input to be in a certain bin. They also use multi-tasking in an end-to-end fash-
ion, regressing from the learnt distribution the age through a linear layer and a
softmax activation function. In [8], the authors use a GAN-like architecture to
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reconstruct facial images with certain ages. They use the sum of 4 losses in or-
der to finally regress the age from an image. In [9], the authors use an approach
similar to Regression via Classification, but instead of projecting the continuous
target values into one discrete representation through bins, they do it in multiple
ways.

A systematic evaluation and statistical analysis of vanilla deep regression,
(i.e. convolutional neural networks with a linear regression top layer) is pre-
sented in [28]. The authors use as base architectures VGG-16 and ResNet-50 in
the context of three distinct problems: head-pose estimation, facial land- mark
detection and human-body pose estimation. They analyze the impact of different
network optimizers, batch sizes, batch normalization, dropout and they compare
three distinct loss functions: Mean Squared Error, Mean Absolut Error and the
Huber loss.

Related to the medical domain, the most popular regression task is estimat-
ing bone age from pediatric hand xRays, which was framed as a challenge in
2017, releasing a dataset developed by Stanford University and the University
of Colorado that was annotated by multiple expert observers [27]. The best ap-
proaches made use of well known pretrained architectures as Inception3 and
ResNet-50 along with data augmentation and ensembling.

3 Investigated approaches

Motivated by the recent great results obtained for image classification task due
to new architectures and new training techniques, we try to revitalize the regres-
sion problem starting from an image through these new state of the art methods.
We have experimented with several neural networks, like ResNet [17], ResNeXt
[18], SE-ResNet [19], EfficientNet [20], SK-ResNeXt [21] and ResNeSt [22]. We
try different methods for adjusting the final layers of our models.

The first approach just adds a linear layer on top of the feature extractor men-
tioned above which outputs a single number, between 0 and 100. For this ap-
proach we used the smooth LI loss, with parameter 5 = 1.

The second approach adds on top of the feature extractor a linear layer with 101
output cells, followed by a softmax activation layer, thus predicting the proba-
bility distribution of each integer percentage. On top of the linear layer we put
another layer with 101 input features (the output of the previous step) and 1
output feature (the number we must regress from the input image). We use as
loss function the sum of two losses:

i=100
loss1 = Llgmootn( Z i- softmax(f1)(i), gt) (1)
i=0
and
loss2 = Llsmooth(f2(0)7 gt) (2)

The first loss is used in order to learn the expectancy of the number we must
regress, whereas the second loss is the loss used in the first method. gt stands
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for ground truth for the current input image. softmaz(f1)(i) represents the **
element of the output of the first added layer on top of the feature extractor af-
ter softmax application. f(0) represents the output number of the second added
layer.

We also try another trick, where instead of approximating the probability ex-
pectation, we approximate the probability distribution itself through the KL-
divergence loss. If an input image has p% target, the distribution will be

Oify<p—3ory>p+3
06ify=np 3)

0.15ify=p—lory=p+1

0.05ify=p—2ory=p+2

P(output = y) =

Thus, other than the two losses presented in the previous method, we compute
the third loss by being the KL-divergence between the predicted probability
distribution and the target one. The final loss will be the sum of the three losses.
We also try to improve the power of the feature extractor, according to [3], and
we replace its global average pooling with a hybrid pooling mechanism.

Fig. 1. The first approach, with a simple linear layer with exactly one output cell
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3.1 Training procedure

We believe this step is very important, as we bring modern training techniques
used for image classification task into estimation tasks.

As training procedure we use SAM + SGD [23] as optimizer and cosine anneal-
ing with warm-up [24] as learning rate scheduler. The initial learning rate is
1e-3. We train every model for 50 epochs. In order to avoid overfitting, we use
Random Augmentation [25] as a strong regularization with the following list of
augmentations: rotation between 0 and 30 degrees, Color, Contrast, Brightness,
Sharpness, ShearX, ShearY, Cutout, TranslateX, TranslateY. We do not rescale
the input and keep the original size of 512 x 512 .

Out of all the feature extractors we tried, we notice that SK-ResNeXt and
ResNeSt (both are based on branch attention [26]) give the best results, no
matter what last layer method we use. We stick with ResNeSt for final architec-
ture. The final ensemble also contains a few ResNeXt models, as we noticed it
boosted the score a little bit more.
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Fig. 2. The second approach, with two linear layers, learning from two tasks
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Fig. 3. The third approach, with two linear layers, learning from three tasks
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3.2 Inference procedure

During inference, the output is always rounded to the closest integer. We only
consider the output of the regression task during inference. We use ensemble
models, gathering predictions from models trained on all our 5 folds. For each
model trained, we use the checkpoints from the last 5 epochs at inference time.
We noticed the results are slightly better when we use just two of our folds.
When combining predictions from different models into a single prediction, we
simply compute the mean of the predictions and round it to the closest integer.
We also notice that the results get a little bit better if we combine ResNeSt
models with one ResNeXt model.

4 Experimental analysis

4.1 Dataset

The dataset provided in the competition consists of several slices from 183
CT scans. The organizers of the competition mention in [3], the importance of
COVID-19 percentage estimation in order to establish the severity of the case.
We split the training set into 5 folds, taking into consideration the distribution of
the labels Normal, Minimal, Moderate, Extent, Severe, and Critical as described
in [3].

4.2 Ablation study

Table 1 presents the results on the validation set obtained with the various setups
for individual models and training procedures that were described above.

Table 1. Results on validation dataset, standalone models

Model Method MAE
ResNeXt50 (1) 5 folds, 30 epochs, only the regression task 4.601076
ResNeXt50 (2) 2 folds, 30 epochs, only the regression task 4.521138
ResNeSt50 (3) 5 folds, 30 epochs, only the regression task 4.654881
ResNeSt50 (4) 2 folds, 30 epochs, only the regression task 4.516526
ResNeXt50 (5) 2 folds, 50 epochs, 2 tasks, without hybrid pooling|4.554189
ResNeSt50 (6) 2 folds, 50 epochs, 2 tasks, without hybrid pooling|4.343582
ResNeSt50 (7) 2 folds, 50 epochs, 2 tasks, with hybrid pooling  [4.285934

EfficientNet-b4 (8) |2 folds, 50 epochs, 2 tasks, with hybrid pooling  |4.8701
SE-ResNet50 (9) |2 folds, 50 epochs, 2 tasks, with hybrid pooling  |4.797079
SK-ResNeXt50 (10)|2 folds, 50 epochs, 2 tasks, with hybrid pooling  [4.405842
ResNeSt101 (11) |2 folds, 50 epochs, 2 tasks, with hybrid pooling  |4.33359
ResNeSt50 (12) 2 folds, 50 epochs, 3 tasks, without hybrid pooling|4.408916
ResNeSt50 (13) 2 folds, 50 epochs, 3 tasks, with hybrid pooling  [4.335127

We can notice that ResNeSt and ResNeXt compete on par when designed
with the most simple method of training, that of adding only a linear layer with
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one output cell. We can also conclude that using only 2 folds (carefully selected)
out of the 5 constructed, improves the results. For the further experiments we
only use the two folds that provided the best results from the first 4 experiments.
From model (5) we can see that adding extra tasks for ResNeXt, does not bring
any improvements, whereas for ResNeSt (model (6)), the improvements are clear.
Using hybrid pooling, instead of global average pooling before the added linear
layers, also adds some improvement to the overall result (model(7, 13)). Adding
the third task to the training procedure does not seem to bring benefits for
the standalone model itself, but brings small improvements when used in an
ensemble.

After deciding which were the best models, we started assembling models to
improve the overall result. The result obtained on the validation set, which placed
us on the first position in the competition in the validation phase, as well as the
constituents of the ensemble are reported in Table 2. This ensemble was used in
the test phase where it recorded a 4.61 MAE on the test set, being ranked third
in the competition.

Table 2. Results on validation dataset, best ensemble

Model Method MAE
models (5, 7, 11, 13)|each model trained with the configs mentioned in 1({4.171407

Self-supervision can be further used to improve the results [29]. We applied
pseudo-labelingand extended the original training set with the inclusion of the
validation dataset for which we use instead of the ground truth (which is not
available) the percentages predicted by the best ensemble model. All models
retrained on the extended dataset provided better results compared with their
counterpart trained just with the training set, as illustrated in Table 3.

Table 3. Results on validation dataset, best ensemble

Model Method MAE
ResNeSt50 |2 folds, trained for 50 epochs, 2 tasks, with hybrid pooling|4.189854
ResNeSt50 |2 folds, trained for 50 epochs, 3 tasks, with hybrid pooling|4.172175
ResNeSt101|2 folds, trained for 50 epochs, 2 tasks, with hybrid pooling|4.156034
ResNeSt200|2 folds, trained for 50 epochs, 2 tasks, with hybrid pooling|4.448885
ResNeSt101|2 same configuration, without rounding when inferencing |4.133743

We noticed during our trials to ensemble the new models that no ensemble
can top the best single model trained on the the extended training set using
pseudo-labeling.
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5 Conclusions

Deep regression methods, built on existing deep learning models pre-trained
for classification tasks in computer vision, may be important tools for assisting
medical diagnosis. In this context, reframing the regression task as multi-task
learning proves once again to bring a significant increase in performance.
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